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The coupled HD hierarchy and a classical integrable system of 
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Shijiazhuang Railway Institate, People's Republic or China 

Received I May 1990 

Abstract. In this paper, the coupled Harry Dym (HD) equations are discussed by means 
of the complex form of the real involutive system. Using the nonlinewization of Lax pairs 
of the coupled H D  equation, a finite.dimensional completely integrable system in the 
Liouville sense is obtained. By making use of the solutions of commutative flows, the 
representation of the solutions for the hierarchy of the H D  equation are generated. 

1. Introduction 

The Liouville-Arnold theory [I] of the finite-dimensional completely integrable system 
is beautiful. The relation between the soliton system and the finite-dimensional com- 
pletely integrable system has been an important topic 121. Flaschka [3] pointed out 
an important principle in producing finite-dimensional integrable systems by constrain- 
ing the infinite-dimensional integrable systems on a finite-dimensional invariant mani- 
fold. However, it is not easy to realize. Not long ago Cao Cewen developed a systematic 
approach [4] to get a finite-dimensional integrable system by the nonlinearization of 
a Lax pair of soliton equation under certain constraints between potentials and 
eigenfunctions. But the result of the complete integrability on the complex space is 
not known. Recently a systematic approach has been given by Gu Zhuqan [SI. The 
complete integrability of the complex involutive system is proved by means of this 
approach, and using the nonlinearization [6 ]  of Lax pairs of the soliton equations, 
many completely integrable systems of the complex form have been obtained. In the 
present paper, on the real space W'", the suitable symplectic construction, Poisson 
bracket and Hamiltonian canonical equation are introduced, therefore the symplectic 
construction, Poisson bracket and Hamiltonian canonical equation are all written in 
the complex form. By making use of the nonlinearization of Lax pairs of the coupled 
Harry Dym (HD) equation [7], a finite-dimensional completely integrable system of 
the complex form is given. Furthermore, the representation of solutions of the coupled 
HD heirarchy is generated by using commutable flows of the finite-dimensional 
completely integrable system. 

2. Symplectic construction I l l  

In order to generate the finite-dimensional completely integrable Hamiltonian system 
of the complex form, we consider the symplectic construction of the basic coordinate 
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functions P , ,  P 2 , .  . . , P 2 N ,  Q,, Q 2 , .  . . , QZN in R4N as follows: 

Zhang Baocai and Gu Zhuqan 

2 N  

,=, w =  x dP,AdQ,. (2.1) 

Therefore the Poisson bracket of two Hamiltonian functions H, F on the symplectic 
space (W4N, w =I,=, dP, A dQ,) is defined as 2 N  

H, F is called an involution if ( H ,  F )  = 0. 

w = I:$ dP, A dQ,) is defined as 
The Hamiltonian canonical equation of the Hamiltonian function H on (R4N, 

P. = ( P , , H ) = - -  ,I J' j = 1 , 2  ,..., 2 N .  (2.3) 
aH 
a p ,  Q .  =(Q. H ) = -  JH 

J Qj 
,I 

Theorem 2.1. Let 

('*' denotes complex conjugate), j = 1,2, . . . , N. Then the symplectic construction ( Z . l ) ,  
Poisson bracket (2.2) and Hamiltonian canonical equation (2.3) are written equivalent 
as follows in complex form: 
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then (2.6), (2.4) and (2.5) are written equally in the complex form as follows: 

2N 2 N  

1-1  ,=I 
o =  dP,ndQ,= d@,Ad'P, 

Z N  aH d F  dH aF 
! - I  ay; a@; a@; ay; 

( H , F ) =  

(2.10) 

In consideration of the real forms (2.1), (2.2) and (2.3), which are equivalent 
respectively to the complex forms (2.8), (2.9) and (2.10) (or (2.4), (2.5) and (2.6)), we 
compute using the complex forms as follows. 

We define 

(1; g) = i .6gj (2.11) 
j = 1  

T T wheref=(f , , f i ,  ..., L) , g = k l , g I , . . . , g " ) .  
Let 2N complex A I ,  A 2 , .  . . , A N ,  A?,  . . . , A %  be different, 

D=diag(A,, . . . , A N ,  A N t l , . .  . , A 2 N )  

where 
A,, = A,*, 1 sjs N 

Lemma 2.1. Define 

( @ k V j  +GjYk) .  

Prooj From (2.9) by direct calculation (or see [e]). 

B k j  
(iv) ( e k ,  @.iTj) = 

U 

i'heorem 2.2. E , ,  E,, . . . , E Z N  defined as follows compose an involutive system (i.e. 
( E k ,  Ej)=O; k, j =  1,2, .  . . , 2 N ) :  

EL =f(W, V)@; -(@, Y)Qk'€'k +;(a, @)'Pi -$(D@,  @)-'Ah@: 

+f(D@, @)-2(D2@, @ ) @ : - i A k e k .  (2.12) 

Prooj The theorem is proved by lemma 2.1 via direct calculation. 0 
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Theorem 2.3. 

( H n ,  Hk)=O,  n, k = O ,  1,2 , .  ... 

system in the Liouville sense: 
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(i) The real Hamiltonian function H, defined as follows is in involution in pairs: 

(ii) The Hamiltonian system (2.10) corresponding to H, is a completely integrable 

H ,  =f(DQ, CJ-~(D'Q,  Q)(D"*'@, Q)-i(D@, Q)-'(Dmf2Q, @)-(@, 'P)(Dmt'@, 'U) 

+;('U, '€')(Om+'@, @)+f(D"+"u, 'U)(@, 0) 

Q) (DJQ, 'U) 
(2.13) 

Proof: From (2.7) and (2.11), so that, H ,  = If*,, i.e. H, is a real function. On the 
other hand, using the generating function method [8,9] we can prove the H ,  = 
Z;?l A,"+'E,. The involutivitiy of Ek implies the involutivity of H,. From (H", H k )  = 0, 
(ii) holds. 0 

3. The coupled HD hierarchy and nonlinearization of the Lax pairs 

Now we consider the coupled HD spectral problem [7] 

y,, = (a -Au - A2u)y (3.1) 

where A is a complex parameter, 0 is a real constant, and U and U are real potential 
functions. 

We define Lenard's sequence {G,, m = -1,O, 1,. . .} using the following recursion 
relation: 

kG,.-, = JG, Gj=(bj, b,+,) G-, = (0, u-"~)' j=O,1,2 ,... (3.2) 

where 

T 

- ( U J + J U )  
(3.3) 

O )  

fa3 - zaa  
J = (  0 

0 +2aJ 
K = ( : J ] - Z ~ J  uJ+Ju 

J - ' J =  JJ-' = 1. J 
J=- 

Jx 

From (3.2), b, ( j=O,  1, .  ..) are polynomials of (U, U, ,.._) and (U, U=,, ..). If the 
constant term of G, ( j = O ,  1,2) takes zero, G, is determined uniquely; in this case 
X ,  = JG,,-l is called the mth-order coupled H D  vector field, (U, U):, = X ,  is called 
the mth-order coupled H D  equation, and ((U, U):, = X,, m =0, 1,2,. . .} is called the 
coupled H D  hierarchy. 

Theorem 3.1. The mth-order coupled H D  equation 

( u , u ) , , , , = X , = J G , - ~  T (3.4) 
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is the compatible condition for the Lax equation 

yu = (a - A U - A ~ U ) ~  

in the case of A,m = 0, y,,,_ = Y , , ~ ~ .  

Proof: According to (3.2) and A,m = 0, y,,,_ = y,wxx and by direct calculation we have 
(3.4). 0 

Example. The first-order coupled H D  equation 

has the Lax representation 

1 
y ,  =(a - AU - h 2 u ) y  y,, = -$(A) Ay+- Ay. 

, J ;  

The second-order coupled H D  equation 

h -1 - .(& - - 2u ( +Jx - f uu, ($) - u2[ (&) ’1 x 

has the Lax representation (Go= - ~ u u - ~ ’ ~  1 )  
y,, = ( ~ - A u  - A ~ U ) Y  

Lemma 3.1. Let yj and Aj satisfy (3.1), 

j = 1 , 2 , .  , , , N 2 fixx = (a - A;u - A j  U)y; 

Proof: Observations on the definition of K,  J and (3.1) and (3.6) are obtained through 
direct calculation. 

From consideration of lemma 3.1 we let O j = y j , .  . . , ON+;= y: ,  ‘ Y , = Y , ~ ,  . , , , 
VN+; = y z ,  j = 1 ,2 , .  . . , N. Then (3.1) and its conjugate form can be written as follows: 

(3.7) O,=Q VI = (a - DU - D2u)0 .  
Let 

U =(DO, U - 2 ( D 2 0 ,  O)(D@, a)-’ 
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From lemma 3.1, we have 
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(DJ<'@, @) 
G . = (  ' (D'*2@,@) ) (3.9) 

Since G, = (b,, b,+,)', so that b, =(D'+l@, @) and b, = b;, the time part (3.5) of the 
Lax pair and its conjugate form of the mth-order coupled H D  equation (3.4) is therefore 
written as 

m 
@,m = (-$bi_l,Dm-Ji'@+b , - I  Dm~J+l'P). (3.10) 

Under the condition (3.8), system (3.7) is nonlinear as follows from the Hamiltonian 

,=0 

canonical equation 

JH wx =- aH @ =-- aw J@ 
(3.11) 

where H =-f(Y,~)-5(0@.@)-2(D2@, @)++a(@,@). 

tonian canonical equation 
Under condition (3.&?), the system (3.10) is nonlinear as follows from the Hamil- 

where Hm is defined by (2.13): 

Theorem 3.2. The Hamiltonian system (3.11) (R4N, Xf?, dP, ndQj, H )  is completely 
integrable in the Liouville sense. 

ProoJ From theorem 2.2, through calculation, we have (Ek,  H )  = 0, so that (H,, H )  = 0, 
m = 1 , 2  , . _ _ ,  2N. As H = H * ,  Hm=H: then (3.1) (R4N,Z$',dP,hdQj,H) is com- 
pletely integrable in the Liouville sense. 

4. The representation of solutions of the coupled HD equation 

Consider the canonical system of the H,,,-Bow: 

If the solution operator of its initial value problem is denoted by gh,,,, then its solution 
can be expressed as 

The canonical system of the H-flow is as follows: 
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If the solution operator of its initial value problem is denoted by g;. then its solution 
can be expressed as 

Since H,,  H are in involution, ( H m ,  H) =0, we have (see [l]): 

Proposirion 4.1, 
(i) The two canonical systems (H,,,), ( H )  are compatible, 
(ii) The Hamiltonian phase flow g;( and gk", commute. 
Define 

The commutativity of {g;, gkJ implies that it is a smooth function of (x, fm), 
which is called the involutive solution of the consistent systems of equation ( H ) ,  (H , ) .  

Theorem 4.1. Let (@(x, t m ) ,  .U(& l , ) ) r  he an involutive solution of the consistent 
system (H), (H,,,), (U. U)' and (@(x, f,), "(x, fm))' satisfy (3.8), then: 

(i) the flow equations ( H ) ,  ( H , )  reduce to the spatial part (contains the conjugate 
part) and time part (contains the conjugate part) respectively of the Lax pair for the 
mth-order coupled H D  equation with (U, U )  as their potential, 

@ , = ( a - D u - D 2 u ) @  (4.2) 
m 

@;* = 1 (-thj_;;D"-J+'Q,+h~:_;n"-j+'~! (4.3) 
j = o  

(ii) (U, U)' satisfies the mth-order coupled H D  equation 
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